Röntgenographische Untersuchungen in den Dreistoffen Cr-P-C, Cr-As-C und Cr-P-B

Von

H. E. Baurecht, H. Boller und H. Nowotny

Aus dem Institut für physikalische Chemie der Universität Wien

Mit 3 Abbildungen

(Eingegangen am 21. Oktober 1970)

X-Ray Investigation of the Ternary Systems Cr— $\{P,As\}$ —C and Cr—P—B

The ternary systems: $Cr-\{P,As\}-C$ have been investigated (quenched samples, from 1000° C). A crystal structure of $Cr_{12}P_7$ is proposed (P6). $Cr_2As(h)$ dissolves carbon; the interstitial mode is changing in a second step to an As/C substitution, forming a partially ordered Fe_2P -type structure. $Cr_6P_{2.6}C_{0.4}$ in contrast is a ternary phase of the same structure type. The existence of Cr_3PC at 1000° C can be confirmed while Cr_3AsC occurs in the presence of some nitrogen. Cr_5PB_2 belongs to the ordered Cr_5B_3 structure type, $Cr_{\sim 4.5}P_2B$ is of the ordered Cr_5B_3 structure type.

Die Aufteilung der Phasenfelder in den Dreistoffen $Cr-\{P,As\}-C$ wird für 1000° C (abgeschreckt) festgelegt. Die Kristallstruktur von $Cr_{12}P_7$ wird ermittelt $(P\overline{6})$. Der Einbau von Kohlenstoff in $Cr_2As(h)$ wechselt von der Auffüllung der Lückenpositionen zur Substitution As/C. Es entsteht ein teilweise geordneter Fe_2P -Typ. $Cr_6P_{2,6}C_{0,4}$ ist dagegen eine ternäre Phase vom gleichen Typ. Die Existenz der Kristallart Cr_3PC wird bestätigt, während Cr_3AsC nur in Gegenwart von Stickstoff auftritt. Cr_5PB_2 gehört zum geordneten Cr_5B_3 -Typ, $Cr_{\sim 4,5}P_2B$ zum geordneten W_5Si_3 -Typ.

Mit der Auffindung von Komplexearbiden¹ in den Systemen: Cr—{P,As}—C schien eine detaillierte Untersuchung dieser Dreistoffe angebracht.

Der Aufbau des Systems: Cr—Cist ziemlich genau erforscht². Kristallchemische Daten über den Zweistoff: Cr—P sind kürzlich von *Lund*ström³ zusammengestellt worden. Danach bestehen neben den lange

¹ H. Boller und H. Nowotny, Mh. Chem. 99, 721 (1968).

² E. Rudy, AFML-TR-65-2, Part V, 1969.

³ T. Lundström, Ark. Kemi 31, 227 (1969).

bekannten Phasen Cr₃P und CrP noch zwei Kristallarten, die als Cr₂P und Cr_{1,7}P formuliert werden. Die Existenz von Cr₂P wurde bereits von Vogel und Kasten⁴ angenommen. Hinsichtlich des Zweistoffes: C—P wird in der Literatur⁵ schließlich eine Verbindung P₂C₆ genannt, ein analoges As₂C₆ soll auch im System: As—C bestehen. Über das System: Cr—As haben wir in einer vorangegangenen Mitteilung⁶ berichtet. Die kristallchemischen Verhältnisse im Zweistoff: Cr—B sind weitgehend aufgeklärt⁷, ebenso im B—P-System, in dem die Verbindungen BP und B₁₃P₂ existieren⁸. Im Dreistoff: Cr—P—B ist die Löslichkeit von Bor in Cr₃P bereits bekannt⁹.

Die Herstellung der Proben erfolgte wie üblich durch Sintern der pulverförmigen Komponenten in Quarzampullen.

Die Aufteilung der Phasenfelder in den beiden Dreistoffen Cr— $\{P,As\}$ —C ist aus Abb. 1a und b ersichtlich und gilt für eine Temperatur von etwa 1000° C (abgeschreckt). Außerdem wurden die Gleichgewichte im Dreistoff: Cr—As—C auch bei rund 800° C näher erfaßt.

Cr—P—C: Es treten zwei ternäre Phasen auf, $Cr_6P_{\sim 2,6}C_{\sim 0,4}$ mit geringem homogenen Bereich und Cr_3PC . Die Existenz der Phasen Cr_2P und $Cr_{\sim 1,7}P$ ($Cr_{12}P_7$) wird bestätigt.

Cr—As—C: Bei 1000° C findet man eine merkliche Aufnahme von Kohlenstoff (8 At% C) in der Phase $Cr_2As(h)^{10}$; im Schnitt bei 800° C tritt ferner noch das Gleichgewicht $Cr_{\sim 4}As + Cr_2As(t) + Cr_{23}C_6$ auf. Das Komplexcarbid Cr_3AsC^1 wurde hier nicht beobachtet; diese Phase benötigt offensichtlich geringe Mengen an Stickstoff zur Stabilisierung. Wie schon erwähnt⁶, bleiben allerdings die Gleichgewichte bei 800° C und tiefer im Gebiete zwischen CrAs und Cr_4As_3 bzw. 40 At% As noch ungeklärt.

Es gelang, die Struktur der Kristallarten $\operatorname{Cr}_{12}\operatorname{P}_7$ mit Hilfe von Einkristallen aufzuklären. Außerdem konnte die Art des Einbaues von Kohlenstoff in $\operatorname{Cr}_2\operatorname{As}$ durch EK-Aufnahmen plausibel gemacht werden. Die Struktur von $\operatorname{Cr}_6\operatorname{P}_{\sim 2,6}\operatorname{C}_{\sim 0,4}$ ist weitgehend der C-haltigen Mischphase $\operatorname{Cr}_2\operatorname{As}(h)$ analog.

⁴ R. Vogel und G. W. Kasten, Arch. Eisenhüttenw. 12, 387 (1939); siehe auch F. E. Faller und W. Biltz, Z. anorg. Chem. 248, 209 (1941).

⁵ Gmelin, Hdb. anorg. Chemie **16**, Teil **C**, Verlag Chemie, Weinheim 1965.

⁶ H. E. Baurecht, H. Boller und H. Nowotny, Mh. Chem. **101**, 1696 (1970).

⁷ Siehe W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 1 and 2, Pergamon Press, Oxford etc. 1958, 1967.

⁸ Siehe ⁷, und zwar Vol. 2.

⁹ S. Rundqvist, Acta Chem. Scand. **16**, 1 (1962).

¹⁰ H. Wolfsgruber, H. Boller und H. Nowotny, Mh. Chem. 99, 1230 (1968).

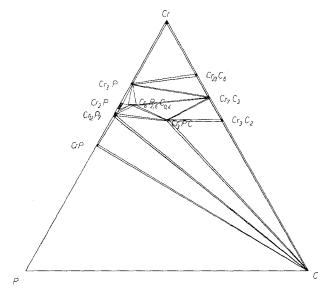


Abb. 1a. Phasenfeldaufteilung im System Cr—P—C bei 1000° C

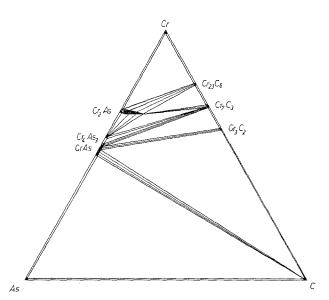


Abb. 1b. Phasenfeldaufteilung im System Cr—As—C bei 1000° C

Die Kristallstruktur von $Cr_{12}P_7$. Nach Lundström³ ist $Cr_{\sim 1,7}P$ mit dem Antityp Th_7S_{12} verwandt. Proben dieser Zusammensetzung wurden erneut gepulvert und in evakuierten Quarzampullen nunmehr bei

 1250° C etwa 70 Stdn. geglüht. Auf diese Weise konnten Einkristalle erhalten werden, die sich für DK- und Weissenbergaufnahmen gut eigneten. Diese führen auf eine hexagonale Elementarzelle mit den Parametern:

$$a = 8,97$$
₇ Å
 $c = 3,31$ ₆ Å und $c/a = 0,369$.

Diese Gitterparameter stammen aus der Auswertung von Pulveraufnahmen (Tab. 1) der gleichen Zusammensetzung und liegen im Bereich

Tabelle 1. Auswertung einer Pulveraufnahme von $\operatorname{Cr}_{12}P_7$ ($\operatorname{CrK}\alpha$)-Strahlung

(hkl)	$\sin^2\vartheta \cdot 10^3$ beob.	$\sin^2\vartheta \cdot 10^3$ ber.	$I_{ m gesch}.$	$I_{ t ber.}$
 (101)	141.5	141,0	ss	6
(220)	260,7	260,5	s	12
(211)	271,5	271,3	sst	100
(310)	282,4	282,2	m-	21
(301)	315,9	314,7	\mathbf{m}	21
(400)	347,2	347,4	ss	5
(221)	280,7	379,8	s^+	11
(311)	401,2	401,5	\mathbf{s}	9
(410)	456,4	455,9	s^+	18
(002)	477,3	477,3	S	15
(321)	531,4	531,8	SSS	3
(420)	607,4	607,9	ss-	4
(510)	672,6	673,0	ss-	4
(421)	727,0	727,2	SS	7
(222)	737,8	737,8	SS	6
(312)	760,5	759,5	s	12
(600)	781,0	781,6	SSS	2
(511)	792,5	792,3	ss^+	7
(402)	824,1	824,7	SS	5
(520)	847,3	846,7	s-	10
(431)	924,0	922,6	ss(d)	10
$egin{array}{c} (412) \\ (610) \end{array}$	933,9	$933,2 \} \ 933,5 \}$	st	$egin{cases} 48 \\ 4 \end{cases}$
(521)	966,8	966,0	sst	90

der von Lundström ermittelten, wobei allerdings die einfache a-Achse und nicht eine $\sqrt{3}$ fache wie bei diesem Autor zugrunde gelegt ist. Aus den vorliegenden Aufnahmen ergibt sich jedoch kein Hinweis für eine größere a-Achse. Entsprechende Überstrukturreflexe (gemäß $a\sqrt{3}$) konnten auch bei sehr stark exponierten Weissenbergaufnahmen nicht gefunden werden. Unter Berücksichtigung der weitgehenden Intensitäts-

gleichheit von (hk0) und (hk2) ist die Atomanordnung in den Raumgruppen P6/m, P6₃/m und P $\bar{6}$ zu suchen. Aus einer *Patterson*synthese läßt sich ein Strukturvorschlag erstellen, der tatsächlich dem Antityp von Th₇S₁₂ sehr ähnlich ist. Da sich P6₃/m und P $\bar{6}$ nur durch die Auslöschung in (00l) unterscheiden, wurde eine least-squares-Verfeinerung

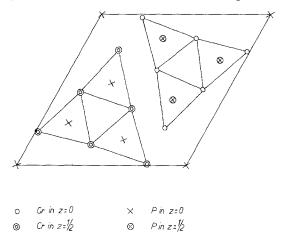


Abb. 2. Die Kristallstruktur der Phase Cr₁₂P₇

für beide gerechnet. Man erhält für P6₃/m einen R-Wert von 22%, für P6 einen solchen von 9% für beobachtete Reflexe. Daraus ergeben sich die Abweichungen in der Atomanordnung gegenüber dem Antityp von $\operatorname{Th}_7S_{12}^{11}$. So besetzt das Phosphoratom P_{III} im Gegensatz zu der statistischen Aufteilung von Th_I in $00\frac{1}{4}$ und $00^3/_4$ bei $\operatorname{Th}_7S_{12}$ nur eine einzige dieser Positionen. In Abb. 2 fällt diese Lage mit dem Ursprung zusammen. Die Atomparameter gehen aus Tab. 2 hervor. Der Strukturvorschlag wird durch die Gegenüberstellung der F-Werte wahrscheinlich gemacht

			-					
		x	$\Delta x \cdot 10^4$	y	$\Delta y \cdot 10^4$	z	В	$\Delta B \cdot 10^2$
3 Cr ₁	3 j)	0,3694	17	0,5092	18	0	0,46	20
$3 \operatorname{Cr_{II}}$	3 k	0,5091	21	0,1315	17	$\frac{1}{2}$	1,08	24
$3 Cr_{III}$	3 k)	0,7894	25	0,0125	27	$\frac{1}{2}$	2,95	42
3 Cr_{IV}	3 j)	0,0162	20	0.2577	18	$\tilde{0}$	1,76	32
$3 P_{\tau}$	3 k)	0,1634	30	0,4408	33	$\frac{1}{2}$	2,01	64
$3 P_{II}$	3 j)	0,4497	22	0,2881	24	ő	0,32	40
1 Pm	1 a)	0		0		0	0.04	48

Tabelle 2. Atomparameter der Phase Cr₁₂P₇

¹¹ W. H. Zachariasen, Acta Cryst. 2, 288 (1949).

(Tab. 3). Die interatomaren Abstände sind: Cr—Cr = 2,67; 2,68; 2,70; 2,77; 2,83; 2,85; 2,88 und Cr—P = 2,24; 2,25; 2,33; 2,38; 2,40; 2,42; 2,43; 2,46 Å.

Tabelle 3. Beobachtete und berechnete Strukturamplituden der Phase Cr₁₂P₇

(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $	(hkl)	$ F_0 $	$ F_c $
(300)	30	35	(730)	28	21	(901)	35	35
(400)	71	56	(140)	32	32	(111)	9	9
(500)	24	23	(240)	28	27	(211)	81	81
(600)	37	35	(340)	43	44	(311)	37	35
(700)	28	19	(440)	12	14	(511)	57	53
(800)	61	57	(540)	53	50	(711)	54	47
(900)	18	17	(640)	8	11	(811)	31	36
(110)	13	17	(150)	29	$\bf 24$	(121)	120	134
(210)	10	10	(250)	57	61	(222)	66	72
(310)	8	12	(350)	15	18	(321)	31	34
(410)	119	124	(450)	22	28	(421)	48	43
(510)	52	54	(550)	7	6	(621)	24	27
(610)	44	35	(650)	28	29	(131)	55	48
(710)	28	28	(160)	6	10	(331)	13	13
(810)	8	7	(260)	18	23	(431)	24	27
(910)	12	18	(360)	22	26	(631)	60	59
(120)	12	14	(460)	20	20	(731)	13	15
(220)	85	79	(560)	10	13	(241)	33	35
(320)	26	30	(270)	14	14	(341)	29	29
(420)	53	57	(370)	35	32	(441)	14	17
(520)	51	53	(470)	49	52	(541)	24	21
(620)	6	7	(180)	12	15	(641)	39	39
(720)	12	13	(280)	24	27	(251)	118	107
(820)	13	13	(190)	38	39	(351)	35	32
(130)	117	115	(101)	29	29	(451)	10	9
(230)	14	13	(201)	16	15	(161)	10	11
(330)	13	14	(301)	85	87	(261)	19	22
(430)	8	9	$\mathfrak{g}(401)$	35	32	(171)	22	25
(530)	43	42	(601)	17	14	(371)	19	20
(630)	28	28	(801)	25	25	(181)	30	30

Die Kristallstruktur (Abb. 2) ist wieder gekennzeichnet durch das Auftreten von trigonalen Metallprismen, die das Phosphoratom aufnehmen. Allerdings umgeben, wie schon früher gezeigt wurde 12 , zwei weitere Metallatome an den Seitenflächen das zentrale P-Atom. Bemerkenswert an dieser Struktur ist ferner die Umgebung des P-Atoms in 000. Obwohl die $K.\ Z.$ von 9 ebenfalls in der Entwicklungsreihe der Metallpolyeder bekannt ist, besteht hier ein Unterschied insofern, als

 $^{^{12}}$ B. Aronsson, T. Lundström und S. Rundqvist, Borides, Silicides, and Phosphides. Methuen, London 1965.

drei nächste Nachbarn (in einer Ebene mit P) auftreten. In Übereinstimmung damit und auch mit den kurzen Abständen Cr—P in dieser Lage ist der sehr kleine Temperaturfaktor (siehe Tab. 2). Andererseits weisen die sechs weiteren Cr-Atome dieser Neuner-Koordination einen sehr hohen Temperaturfaktor (etwa 3) auf, im Einklang mit dem verhältnismäßig großen Abstand Cr—P = 2,56 Å.

Die Kristallstruktur von $Cr_2As(h)$ und $Cr_6As_{3-x}C_x$.

Die Hochtemperaturform von Cr₂As, die mit dem Fe₂P-Typ strukturgleich erkannt wurde⁷, war bisher nur durch Pulveraufnahmen charakterisiert. Wegen der beachtlichen Löslichkeit von Kohlenstoff in dieser Phase sollte mit Hilfe von Einkristallen eine Verfeinerung der strukturchemischen Verhältnisse versucht werden. Brauchbare Einkristalle konnten für Cr₂As(h), Cr₆As_{2,5}C_{0,5} und Cr₆As_{2,2}C_{2,8} hergestellt werden. Die Auswertung sämtlicher Aufnahmen führt auf den Fe₂P-Typ mit P62m; Fouriersynthesen zeigen deutlich, daß erstens z praktisch von Null nicht abweicht (gegenüber früher z = 0.055) und daß zweitens die Besetzung der Arsenposition in 00½ nicht vollständig sein kann. Der erste Befund wird auch durch die erneute Bestimmung des Fe₂P-Typs¹³ unterstützt. Der Unterschuß (zweiter Befund) steht in gewisser Übereinstimmung mit der Tatsache, daß Cr₂As(h) mit vollständiger Besetzung eine sehr hohe Röntgendichte und zum Teil sehr kurze Cr—As-Abstände aufweist. Ferner läßt sich damit auch der Einbau von Kohlenstoff leicht verstehen, wobei die an sich seltene Substitution As/C — und das gleiche gilt für P/C — dem Fall der Silicium/ Bor-Substitution in Ni₆Si₂B (geordneter Fe₂P-Typ)¹³ oder dem Austausch Bor—Phosphor im Cr₅B₃- oder W₅Si₃-Typ entspricht. Der Substitutionsmodus läßt sich weitgehend auch durch den Verlauf der Gitterparameter verstehen. Die nicht ganz eindeutige Zunahme des Volumens zu Beginn des C-Einbaues könnte mit einer möglichen Auffüllung der teilweise besetzten As_{II}-Lage gedeutet werden (Abb. 3).

Mit least squares-Methode berechnete Atomparameter für $Cr_2As(h)$, $Cr_6As_{2,5}C_{0,5}$ und $Cr_6As_{-2,2}C_{-0,8}$ gehen aus Tab. 4 hervor, ebenso die R-Werte. Einen Vergleich der |F|-Werte für $Cr_6As_{2,2}C_{0,8}$ erlaubt Tab. 5.

Die Unterbesetzung der As_{II} -Position bedeutet demnach eine Änderung in der Zusammensetzung gemäß $Cr_6As_{2,8}$, womit auch die F-Werte gerechnet werden. Damit erniedrigt sich die Röntgendichte auf 7,2 g/cm³. Es läßt sich ferner aussagen, daß in der As_{II} -Lage im Falle maximaler Löslichkeit von Kohlenstoff das Arsen weitgehend durch diesen ersetzt wird. Damit ist auch der merklich kurze Abstand Cr—C(As)

¹³ S. Rundqvist und F. Jellinek, Acta Chem. Scand. 13, 425 (1959).

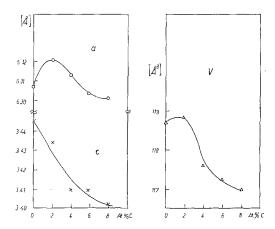


Abb. 3. Verlauf der Gitterparameter von Cr2As(h) in Abhängigkeit vom

gelösten Kohlenstoff Tabelle 4

a) Atompa	a) Atomparameter von Cr ₂ As(h)				nD_{3h}^{3}	R-We	ert: 10,0%
		x	$\Delta x \cdot 10^4$	y	z	В	$\Delta B \cdot 10^2$
$3 \mathrm{Cr_I}$	3 f	0,2445	28	0	0	1,92	34
$3 \mathrm{\ Cr_{II}}$	$3 \mathrm{~g}$	0,5837	27	0	0,5	1,27	34
$2~\mathrm{As_I}$	$\stackrel{\circ}{2}{ m e}$	0,3333		0.6667	0	0,18	20
$0.8~\mathrm{As_{II}}$	1 b	0		0	0,5	3,60	62
b) Atompa	ırameter ı	$con \ \mathrm{Cr_6As_2}$	$_{,5}\mathrm{C}_{0,5}$	$P\overline{6}2r$	$\mathrm{m-D}_3^{3h}$	$R ext{-We}$	rt: 14,5%
<u> </u>		x	$\Delta x \cdot 10^4$	y	z	В	$\Delta B \cdot 10^2$
3 Cr_{I}	3 f	0,2529	50	0	0	2,00	49
$3~\mathrm{Cr_{II}}$	$3~\mathrm{g}$	0,5859	33	0	0,5	0,38	37
$2~\mathrm{As_I}$	$\stackrel{\circ}{2}$ $\stackrel{\circ}{\mathrm{c}}$	0,3333		0,6667	0	0.42	27
$0.5~\mathrm{As_{II}}$	1 b	0		0	0,5	3,51	65
$0.5~\mathrm{C}$	1 b	0		0	0,5	3,51	65
c) Atompa	rameter v	on Cr ₆ As _{2,}	${}_{2}\mathrm{C}_{0,8}$	$P\overline{6}2$	m — $\mathrm{D}_{3\mathrm{h}}^{2}$	$R ext{-We}$	rt: 10,8%
		\overline{x}	$\Delta x \cdot 10^4$	y	z	В	$\Delta B \cdot 10^2$
$3 \operatorname{Cr_{I}}$	3 f	0,2332	47	0	0	0,89	64
3 Cr_{II}	$3 \mathrm{g}$	0,5759	53	Ö	0,5	0,94	67
$2\mathrm{As_I}$	$\overset{\circ}{2}\overset{\circ}{\mathrm{c}}$	0,3333		0,6667	0	0,56	$\frac{3}{47}$
$0.2~\mathrm{As_{II}}$	1 b	0	_	0	0,5	-0.14	354
0,8 C	1 b	0	_	0	0,5	0.14	354

von 2,25 Å verträglich. Demnach kann man annehmen, daß der Einbau von Kohlenstoff in $\operatorname{Cr}_2\operatorname{As}(h)$ bzw. $\operatorname{Cr}_6\operatorname{As}_{2,8}$ in partieller Ordnung erfolgt. Die Idealzusammensetzung gemäß " $\operatorname{Cr}_6\operatorname{As}_2\operatorname{C}$ " analog zu $\operatorname{Ni}_6\operatorname{Si}_2\operatorname{B}$ existiert offenbar nicht.

Tabelle 5. Beobachtete und berechnete Strukturamplituden* von $\operatorname{Cr}_6\operatorname{As}_{2,2}\operatorname{C}_{0,8}$

(hkl)	$ F_{ m o} $	$ F_c $	(hkl)	$ F_{o} $	$ F_c $	(hkl)	$ F_{ m o} $	$ F_c $
(100)	14	16	(110)	25	21	(320)	22	17
(200)	0	0	(210)	62	73	(420)	32	27
(300)	63	64	(310)	38	36	(520)	36	36
(400)	25	20	(410)	44	48	(330)	39	42
(500)	30	26	(510)	27	23	(430)	10	10
(600)	25	17	(610)	27	27	(530)	4	6
(700)	5	6	(220)	46	46	(440)	29	33

Tabelle 6. Auswertung einer Pulveraufnahme von $Cr_6P_{2,55}C_{0,45}$ (CrK_{α} -Strahlung)

(hkl	$\sin^2\vartheta \cdot 10^3$ beob.	$\sin^2\vartheta \cdot 10^3$ ber.	$I_{ m gesch.}$	$I_{ m ber.}$	
(101	172,0	172,3	ss	4	
(200	185,3	185,6	SS	3	
(111	(265,3)	265,1	sst	100	
(201	311,1	311,5	st	62	
(210	325,7	324,8	st^-	49	
(300	418,3	417,6	\mathbf{m}	23	
(211	451,2	450,7	\mathbf{m}	13	
(002	2) 503,5	503,5	m	20	
(220	557,5	556,8	sss	1	
(310	604,0	603,2	s	12	
(311	728,5	729,1	m	34	
(400	742,4	742,4	ss	6	
(212	828,0	828,3	st^-	54	
(401	868,0	868,3	s	12	
(320	881,9	881,6	s-	9	
(302	921,2	921,1	st	60	
(410	974,4	974,4	\mathbf{m}	22	

Die Phase $Cr_6P_{2,6}C_{0,4}$. Aus Pulveraufnahmen ist die Isotypie mit der Mischphase $Cr_6As_{2,2}C_{0,8}$ unmittelbar ersichtlich. Im Gegensatz zu dieser ist aber $Cr_6P_{2,6}C_{0,4}$ eine ternäre Kristallart. Tab. 6 gibt eine Auswertung eines Röntgenogramms von $Cr_6P_{2,55}C_{0,45}$. Die Gitterparameter sind:

^{*} Strukturamplituden für die Kristalle Cr₂As(h) und Cr₆As_{2,5}C_{0,5} finden sich in der Dissertation von H. E. Baurecht, Univ. Wien 1970.

$$a = 6.136 \text{ Å},$$

 $c = 3.227 \text{ Å und } c/a = 0.526$

für $Cr_6P_{2,55}C_{0,45}$ und

$$a = 6.117 \text{ Å},$$

 $c = 3.242 \text{ Å und } c/a = 0.530$

für $Cr_6P_{2,75}C_{0,25}$.

Demnach kann diese Phase als C-stabilisiertes Cr_2P mit Fe_2P -Typ aufgefaßt werden.

Die Atomparameter sind $x_{\rm II}=0.260$ und $x_{\rm II}=0.590$, ermittelt aus Pulveraufnahmen. Der charakteristische Abstand Cr—P(C) ist 2,27 Å, was einer teilweisen P/C-Substitution weitgehend entspricht.

Tabelle 7. Auswertung einer Pulveraufnahme von $Cr_5PB_2(Cr_5B_3-Typ)$ ($CrK_{\alpha}-Strahlung$)

(hkl)	$\sin^2\Theta\cdot 10^3$	$\sin^2\Theta\cdot 10^3$	$I_{ m gesch.}$	$I_{ m ber.}$
(110)	84,5	83,8	SSS	3
(112)	133,1	132,5	SSS	3
(004)	196,3	195,2	SS	7
(202)	217,5	216,6	ss	5
(211)	221,9	221,9	st	40
(114)	279,2	279,1	${f st}^-$	25
(213)	319,2	319,5	sst	60
(220)	335,6	335,6	\mathbf{m}	12
(204)	363,9	363,0	st	38
(310)	420,1	419,4	st	33
(006)	439,1	439,2	ss	5
(215)	515,7	514,7	SS	5
(411)	725,4	725,2	m	13
(330)	754,5	755,0	SS	6
(008)	781,0	780,9	s	11
(217)	807,8	807,5	st	29
(413)	822,7	822,8	st	30
(420)	838,4	838,9	\mathbf{m}	14
(316)	858,5	858,7	s	11
(404)	865,7	866,3	\mathbf{m}	20
(334)	950,2	950,2	sst	100

Die Phasen Cr_5PB_2 und $Cr_{\sim 4,5}P_2B$. Die beiden ternären Komplexboride sind, wie Tab. 7 und 8 beweisen, isotyp mit den analogen Phasen Mn_5PB_2 (geordneter Cr_5B_3 -Typ, T2) und $Fe_{\sim 4,7}Si_2B$ (geordneter W_5Si_3 -Typ, T1). Die Gitterparameter von Cr_5PB_2 ergeben sich zu:

$$a = 5.59_3 \text{ Å},$$

 $c = 10.37 \text{ Å}; c/a = 1.854.$

Die Werte für Cr_{~4.5}P₂B sind:

$$a = 8.824 \text{ Å},$$

 $c = 4.504 \text{ Å}; c/a = 0.5104.$

Tabelle 8. Auswertung einer Pulveraufnahme der Phase Cr_{4.5}P₂B (W₅Si₃-Typ) (CrK_σ-Strahlung)

(hkl)	$\sin^2\Theta \cdot 10^3$ beob.	$\sin^2\Theta\cdot 10^3$ ber.	$I_{ m gesch.}$	$I_{ m ber.}$
(220)	134,3	134,6	ss	11
(310)	169,3	168,3	s	15
(002)	259,1	258,4	\mathbf{m}	36
(321)	284,0	283.4	st	60
(112)	291,9	292,1	ss	7
(330)	303,0	303,0	s	10
(202)	325,7	325,7	\mathbf{m}^{-}	13
(420)	337,2	336,6	\mathbf{m}	17
(411)	352,1	350,7	sst	100
(222)	394,3	393,0	m	20
(402)	527,9	527.7	SS	3
(332)	560,9	561.4	SS	3
(530)	574.8	572,2	SS	5
(620)	674.3	673,2	s	8
(512)	697,0	696,0	s	10
(323)	799.5	800.2	\mathbf{m}	25
(631)	822,0	821,8	\mathbf{m}	28
(532)	831,3	830,6	m	26
(710) (550)	841,6	841,6	st	${24 \brace 16}$
$(413)^{\prime}$	868,0	867,5	sst	73
(730)	976,3	976,2	S	22

Wie von Rundqvist bereits beobachtet, tritt die geordnete W_5Si_3 -Struktur nur bei merklichem Defekt an Übergangsmetall auf, wofür auch der sehr kurze Abstand Cr—Cr=2,25 Å spricht. Man sieht auch, daß die ternäre Kristallart $Cr_{\sim 4,5}P_2B$ auf einer Konjugationslinie zwischen $Cr_{12}P_7$ ($Cr_{1,7}$)P und Bor zu liegen kommt. Bemerkenswert ist der Befund auf dem Schnitt zwischen der sehr stabilen ternären Phase Cr_5PB_2 und Cr_5B_3 . Es zeigt sich nämlich, daß Proben auf dieser Konjugationslinie auf einen weitgehenden Übergang zwischen Cr_5PB_2 und Cr_5B_3 hinweisen. Bei diesen Proben, von 1000° C abgeschreckt, findet man Nichtgleichgewichts-Zustände, welche durch das Auftreten mehrerer Teilgitter charakterisiert sind. Diese Teilgitter (bis mindestens vier bei einer Probe und einem B/P-Verhältnis von 8) weisen abgestufte Gitterparameter auf. Danach ist bei hohen Temperaturen ein homogener

Übergang anzunehmen. Cr_5PB_2 steht ferner mit Chrom, CrB, Cr_3P , Cr_2P und $Cr_{4,5}P_2B$ im Gleichgewicht. Ergänzend sei bemerkt, daß unter den gewählten Bedingungen ein Gleichgewicht: CrP + CrB + BP beobachtet wurde.